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Arithmetic and Logic Instructions Are Easy

True
False

* Two operands

sll x5, x5, x9 Shift x5 left of/x9 positions =2 x5

add X6, x5, x7 Add x5 and X7 =2 x6

xor X6, X6, X8 Logic XOR Witwise x6 and x8 =2 x6

slt X8, X6, X7 Set x8 t x6 is lower than x7, ttherwise

 One operand and a constant (12-bit immediate)

slli x5, x5, 3 Shift x5 left of 3 positions 2 x5
addi x6, x5, 72 Add 72 to x5 2 x6
xXori X6, X6, -1 Logic XOR bitwise x6 and OxFFFFFFFF = x6

slti X8, X6, 321 Set x8 to 1if x6 is IWZL to 0 otherwise
xori rd,rsl,imm rd < rs1’sext(imm) OxFFF sign extended

to OXFFFFFFFF




Constants Must Take < 12 Bits

* The constant (immediate) is part of the instruction!

31 25 24 20 19 15 14 12 11 76 0

R . rsl funct3 rd opcode | Register-Register

I m 1 _funct3 rd opcode | Register-Immediate

I 0 = rsl funct3 | Toh—— opcode | Register-Immediate Shift
S 1mm[11 5] rs2 rs1 | funct3 imm/[4:0] opcode |
B i ; . imm[4:1—11] | opcode | Branch

€«<—1d opcode | Upper Immediate
rd OpCOTe ==

imm[31:12]

* To use larger constants, one needs to go through a register

lui x5, 0x12345
Xori X6 X12345678 addiu x5, x5, Ox678

xor X6, X6, X5




Assembler Directives

 The assembler can help to have more readable code
.equ something, ©x12345678

lui x5, 0x12345
addiu x5, x5, Ox678 lui x5, %hi(something)
xor X6, X6, X5 addiu x5, x5, %lo(something)
xor X6, X6, X5
Directive Effect
.text Store subsequent instructions at next available address in text segment
.data Store subsequent items at next available address in data segment
.asciiz Store string followed by null-terminator in .data segment
.byte Store listed values as 8-bit bytes
.word Store listed values as 32-bit words

.equ Define constants




A Strange Register: x0

* The register x0 does not behave like all others:
— Register x@ is always zero
— One can write into x© but this has no effect—because it is always zero

* Both aspects are handy in many situations
— Zero is a very common, useful value—e.g., set x5 €< —x5
sub x5, x0, x5
— If one does not care of the result of an instruction—e.g., no operation
add x0, x0, x0©




Pseudoinstructions

Pseudoinstruction Base Instruction(s) Meaning

nop addi x0, x0, O No operation

1li rd, immediate Myriad sequences Load immediate
[mv rd, rs addi rd, rs, O Copy register

not rd, rs xori rd, rs, -1 complement
neg rd, rs sub rd, x0, rs Two’s complement
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if # zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs \ slt rd, x0, rs Set if > zero
1i x5, ©0x123 1i X5, 0x12345678
11 should probably be called mvi @ @

but is not for historical reasons
addiu x5, x0, 0x123 lui X5, ©x12345

addiu x5, x5, 0x678




Why Pseudoinstructions?

“and x5, x1, x3”

0000 0PV 0010 0PV 1000 VP11 0010 0011
We want to minimize
| hardware resources...

[Make this simple!] @(_J
Decoder
\_ -
AV 4 \

I I | I | ...and we want to spend
minimal time decoding!

01001 1 00001 00011 0110011

CCXS)) 1 ffxl)) f(X3)) f(andJ)



Control Flow (or Control Transfer)

X0 0
x1 0x00123456
X2 0
X3
X360
x31 .. loop:

Only one form of control flow:

branch/jump to a particular instruction \

1li
1li
1li
1li
1li
1li
and
add
srli
addi
bne

x1,
X2,
X3,
X4,
X5,
X6,
x5,
X2,
x1,
X4,
X4,

0x00123456
5

1

5

5

32

x1l, X3

X2, X5

x1l, 1

x4, 1

e




An IF-THEN-ELSE Branch if equal

.text
. 1i x7, 72
if (x5 == 72) { beq x5, x7, then_clause
X6 = X6 + 1;
} else {

X6 X6 - 1; addi X6, X6) -1
—rl } j end_if ‘\
¢

then_clause:
addi x6, x6, 1

Jump back to
the rest of the
code

el

TITTTTTTTO T —r Tt TITTTTITTTO TPTTTTTT—TOTT

imm[12—10:5] rs2 rsl | funct3 | imm[4:1—11] | opcode | Branch

[ 1.9l

: ) end_if:
beqgi does not exist -

(no space in the encoding for an immediate)




Jumps and Branches

e A common but far from universal distinction

— Jumps =2 unconditional control transfer instructions
— Branches = conditional control transfer instructions

e This is the RISC-V convention (inherited from MIPS and used by
SPARC, Alpha, etc.)

* Other processors do not. In x86, for instance, everything is a
jump: JMP, JZ, JC, JNO




Pseudoinstructions

Pseudoinstruction Base Instruction(s) Meaning )
beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if # zero
blez rs, offset bge x0, rs, offset Branch if < zero
bgez rs, offset bge rs, x0, offset Branch if > zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero

bgt [rs, rt, offset blt |[rt, rs, offset Branch if >
ble |rs, rt, offset bge |rt, rs, offset Branch if <
gtu rs, rt, offset tu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if <, unsigned

l

The processor implements only < and >
and the assembler “creates” <and >




An DO-WHILE Loop

.text
do {

x5 = x5 >> 1; loop:
X6 = X6 + 1; srli x5, x5, 1
} while (x5 != 0); addi x6, x6, 1

bnez x5, loop




Functions

* Our high-level code is conveniently organized in functions (a.k.a.
routines, subroutines, procedures, methods, etc.)

* Reuse and modularity!

> int sqrt(int n) {

int r;
int main() {
5 return r;
b = sqrt(a); t
d = sqrt(c);
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What Calling a Function Involves

Place arguments where the called function can access them

. Jump to the function
. Acquire storage resources the function needs

Perform the desired task of the function

Communicate the result value back to the calling program
Release any local storage resources

Return control to the calling program




2. Jump to the function

3. Acquire storage resources the function needs

6. Release any local storage resources

What Calling a Function Involves

. Place arguments where the called function can access them

. Communicate the result value back to the calling program

. Return control to the calling program




A Too Simple (i.e., Not Working) Approach

sqrt:
main: i back
5 sqrt
back:
J sqrt We need to know the value of the

back2: Program Counter (PC) when the call takes place

We need to use that information when jumping back




The PC Is Not a Normal Register

Registers are here —

The PC is here

MemDataOut

Register
File

AW Wr AA AB

B
Data

Memory

MemDataln
Wr

Address

Control Logic (Read, Decode, Update PC)
Program dd
Counter (PC) el

1

MemData

Instruction
Memory




The Good Approach

Jump and link,
that is, leave PC + 4 into x1

as a “link” to the caller sqrt:

3648

4896

T 4900 @ x1
1200
1204 x1, sqgrt

1208 .. €

Jump to the address
2416 specified in a register

2420 jal x1, sqrt [ x1 € 1208 J

2424




The Good Approach

Jump and link,
that is, leave PC + 4 into x1

as a “link” to the caller sqrt:

3648

4896

. (514

main: 22 @ =
1200

1204 x1, sqgrt

1208

Jump to the address
2416 specified in a register

2420 jal x1, sqgrt [ x1 €& 2424 J

2424 e €




Only Two Real Jump Instructions!

Jump and link

jal rd,imm rd < pc +4
pc < pc + sext(imm < 1)
jalr zrd,rsl,imm rd <— pc +4

pc < (rsl + sext(imm)) & (~1)

In RISC-V, imm(reg)
simply means reg+imm

Pseudoinstr. Base Instruction(s) Meaning

j offset jal x0, offset Jump

jal offset jal offset Jump and link

jr rs jalmx0, [0(rs) Jump register

jalr rs jalr|x1l, O(rs) Jump and link register
ret jalr \x0, Return from subroutine

L By convention RISC-V uses always

register x1 to store the return address




Register Conventions

Register | ABI Name | Description Preserved across call?
x0 Zero Hard-wired zero —
x1 ra Return address | No

We will understand
this column later...




call

in many other ISAs

1200
1204
1208

2416
2420
2424

main:

jal sqgrt

The Good Approach

sqgrt:
3648

4896

ret

almost universally




2. Jump to the function

3. Acquire storage resources the function needs

6. Release any local storage resources

What Calling a Function Involves

. Place arguments where the called function can access them

. Communicate the result value back to the calling program

. Return control to the calling program




6. Release any local storage resources

What Calling a Function Involves

. Place arguments wherf/the called function can access them
. Acquire storage resources the function needs

. Communicate the result value back to the calling program




1200
1204
1208

2416
2420
2424

main:

jal

jal

Calling a Function from a Function

[ra < 1208]

sqrt

sqrt

4216
4220
4224
Wrong!

48
4900

sqrt:

jal

ret

[ ra 64224]

round

round:

5964
5968 ret

The second jal has
overwritten the first
return address!




Calling a Function from a Function

round:
5248 :
3648
5964 -
: 4216 add (:::) 5968 ret
main: _
4220 jal round
1200 b
. 4224 su X6, X6
1204 jal sqrt >

1208 ..
4896 ..

Sune 4900 ret
. Who can use x57?!
2420 jal sqgrt

2424




1200
1204
1208

2416
2420
2424

main:

jal

jal

A Very Very Simple Approach

sqrt

sqrt

sqrt:

round:
5248 "
5252 addi x10, x11, 3

5964
5968 ret

round can
only use x10 to x15

3648
4216 add x5, x7, x8
4220 jal round
4224 sub x6, x6, X5
4896
4900 ret

sgrt can

only use x2 to x9

|

Clearly not scalable...

“




6. Release any local storage resources

What Calling a Function Involves

. Place arguments wherf/the called function can access them

. Acquire storage resources the function needs

. Communicate the result value back to the calling program




A Simple Approach

These load/store
instructions with immediate

.data -text addresses do not exist!
sqrt_save ra: .word © sqrt:
sqrt_save x5: .word O

add x5, x7, x8

\
SW ra, (sqrt_save_ra) Preserve what we care
> )
. sw x5, (sqrt_save x5) before calling
Obtain some /

jal round
memory space

lw ra, (sqrt_save_ra) _
> Restore after returning

lw x5, (sqrt_save x5)
sub x6, X6, X5

ret




Problem: A Recursive Function!

.data
find_child_save_ra: .word ©
Back to square one!
Every invocation of find_child saves its
.text

return address in find_child_save ra,
overwriting the value of the caller...

find_child: 4‘—’//////

sw ra, (find child save _ra) <
jal find_child
lw ra, (find _child _save_ra)

ret




What Is the Problem?

» Static memory allocation vs. dynamic

— Static = fixed at assembly / compile / program writing time
— Dynamic =2 fixed during execution

 This is static!

.data

find_child_save_ra: .word ©

* Every invocation of the function needs a new place to store the
return address and their data




3968
3972
3976
39860
3984
3988
3992
3996
4000
4004

The Idea of a Stack

\

Reserve statically an
empty region of memory




3968
3972
3976
39860
3984
3988
3992
3996
4000
4004

The Idea of a Stack

[ x2 =4000 ]

Use a register (e.g. x2) to
point to the first used word
after the end of the region




Dynamically Allocating Space (e.g., 3 Words)

[ X2 =3988 ]

This space is now
reserved for us! —

3 words of 4 bytes

3968 j
3972
3976

addi x2, x2, -12
3980
3984

3088 < | Xz J
3992 l
4000 4
4004

3996




3968
3972
3976
39860
3984
3988
3992
3996
4000
4004

Using the Space

[ x2 = 3988 ]
Sw ra, 0(x2)
Sw x5, 4(x2)
Sw X6, |8(x2)

This means “store at the address
pointed by the value in x2 plus 8”




Dynamically Allocating More Space

[ x2 =3984 ]

3968
3972
3976

o e ——
| ><\

addi x2, x2, -4

3988
3992
3996
4000
4004

The values we
saved are safe!




Deallocating Space Is Simple

[ X2 = 3988 ]
3968
3972 addi x2, x2, 4
3976

3980 (__/
3984 ‘

&&= x2

3988
3992
3996
4000
4004




3968
3972
3976
39860
3984
3988
3992
3996
4000
4004

Retrieve Saved Values

[ X2 =3988 ]

1w ra, 0(x2)
1w x5, 4(x2)
1w X6, 8(x2)

i,

L E—




More Deallocation

[ x2 =4000 ]

addi x2, x2, 12




Stack: Limited but Effective

The simplest form of dynamic memory allocation
Simplicity comes with a big limitation

— Last-In, First-Out (LIFO)

— Deallocation order must be the inverse of the allocation order!

Yet, perfectly matched to our application (function calls)

Other needs will require much more complex approaches that
generally need more “management” and need to deal with
garbage collection




Stack Pointer

* This is so important that we are going to devote a register to this
purpose and everybody will comply with our conventions

Register | ABI Name | Description Preserved across call?

X2 Sp Stack pointer Yes

* Other architectures have special instructions to place stuff on
the stack (push) and to retrieve it (pop)

addi sp, sp, -4
PUSH AX
SW x5, 0(sp)




Spilling Registers to Memory

addi sp, sp -8
<___—~\\\\ Whoever needs to free
x8, 0(sp)

SW
registers, can obtain some

SW X9, 4(s
» 4(sp) space from the stack

# freely use
# x8 and x9

In particular, — <
1w X9, 4(sp) functions can save

1w x8, 0(sp) their return address

addi sp, sp, 8 (if they call other
functions)

sqrt:
addi sp, sp -4
SW ra, 0(sp)

# freely call
# other functions

1w ra, 0(sp)
addi sp, sp, 4
ret




Registers across Functions

Functions change registers

and callers save their stuff Functions preserve registers
? sgrt:
- addi sp, sp -4
addi sp, sp -4 o P =P

S 20, O(s
Sw x20, 0(sp) " X (sp)

# sqrt changes x20
. # uses freely x20
jal sqrt

1w x20, 0(sp)

1w X20, O(s
addi sp, sp, 4 (sp)

addi sp, sp, 4
ret # x20 is preserved

It does not matter (much) provided that everyone agrees...




Preserving Registers: The RISC-V Way

A bit of both

—

Of course!

Register | ABI Name | Description \ Preserved across call?
x0 Zero Hard-wired zero N —

x1 ra Return address \) No } —
X2 Sp Stack pointer Yes

x5 t0 Temporary/alternate link register | | No

x6-7 t1-2 Temporaries No

x8 s0/fp (| Saved register/frame pointer ! Yes

x9 sl < | Saved register Yes

x18-27 | s2-11 Saved registers Yes

x28-31 | t3-6 //ﬂ \ Temporaries ) _No

Saved registers are
callee saved

/

Temporary registers are
caller saved




6. Release any local storage resources

What Calling a Function Involves

. Place arguments wherf/the called function can access them

. Acquire storage resources the function needs

. Communicate the result value back to the calling program




6. Release any local storage resources

What Calling a Function Involves

. Place arguments wher?«the called function can access them

. Acquire storage resources the function needs

. Communicate the result value back to the calling program




What Calling a Function Involves

1. Place arguments where the called function can access them

5. Communicate the result value back to the calling program

9




Passing Arguments: Option 1

Use some particular registers, both for the arguments and for
the returned result

We can do it ad-hoc...
— sqrt gets the argument in x5 and returns the result in x6

...0r we can have some convention

— All functions pass arguments in registers x10 to x17 and return the
result in x10

Can this be insufficient? More arguments than allocated
registers? What if we have 10 arguments for x10 to x17°7




addi
Sw
call

sqrt:

addi
SW

1w

ret

Passing Arguments: Option 2

Sp, SP, -4
s3, 0(sp) # s3 = arg
sqrt
Offset from sp
changes because
sp changes
Sp, SP, -4
ra, 0(sp)
t4, ﬁ](sp) # t4 = arg

We can put them on the stack

Universal solution (the stack is
“unlimited”)

More work than simply using
registers, though...

Many commercial processors do
that




Passing Arguments: Option 2 (+ p)

T * |n addition, one can have another

addi sp, sp, -4 _ )

sw  s3, 0(sp) # 53 = arg register (Frame Pointer; fp or x8

call sqrt in RISC-V) point to the same
location as sp on entry

 Code may be more readable:

sqrt:
mv  fp, sp — sp changes inside the function and
addi sp, sp, -4 so do relative offsets
sw ra, 0(sp) — Offsets with respect to the fp are
fixed
o i, B 5 = A  Use of fp is optional and even

. varies among users and compilers
re




Passing Arguments: The RISC-V Way

* A bit of both

— Some registers reserved for the arguments and return value(s)

Register | ABI Name | Description Preserved across call?
x10-11 | a0-1 Function arguments/return values No
x12-17 | a2-7 Function arguments No

— Rest goes on the stack




Summary of RISC-V Register Conventions

Not covered
in CS-200

|

Register | ABI Name | Description Preserved across call?
x0 Zero Hard-wired zero —
x1 ra Return address No
X2 Sp Stack pointer Yes
x3 gp Global pointer —
x4 tp Thread pointer —
x5 t0 Temporaryfatterpate-hnlcregister No
x6—7 t1-2 Temporaries No
x8 s0/fp Saved register/frame pointer Yes
x9 sl Saved register Yes
x10-11 | a0-1 Function arguments/return values No
x12-17 | a2-7 Function arguments No
x18-27 | s2-11 Saved registers Yes
x28-31 | t3-6 Temporaries No




What Calling a Function Involves

1. Place arguments where the called function can access them

5. Communicate the result value back to the calling program

9




What Calling a Function Involves

v




3968
3972
3976
39860
3984
3988
3992
3996
4000
4004

Something to Worry About...

<

1 X2

We will definitely need to find a solution!
(In a few weeks’ time...)
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