
1

CS-200
Computer Architecture

—
Part 1b. Instruction Set Architecture

Branches, Functions, and Stack

Paolo Ienne
<paolo.ienne@epfl.ch>

2

The Contract between HW and SW

ISA

Transistors
Gates

Assembler

Compilers

Databases

Applications

Software

Hardware

3

Arithmetic and Logic Instructions Are Easy

• Two operands

• One operand and a constant (12-bit immediate)

sll x5, x5, x9
add x6, x5, x7
xor x6, x6, x8
slt x8, x6, x7

Shift x5 left of x9 positions  x5
Add x5 and x7 x6
Logic XOR bitwise x6 and x8 x6
Set x8 to 1 if x6 is lower than x7, to 0 otherwise

slli x5, x5, 3
addi x6, x5, 72
xori x6, x6, -1
slti x8, x6, 321

Shift x5 left of 3 positions  x5
Add 72 to x5 x6
Logic XOR bitwise x6 and 0xFFFFFFFF x6
Set x8 to 1 if x6 is lower than 321, to 0 otherwise

True
False

0xFFF sign extended
to 0xFFFFFFFF

4

Constants Must Take ≤ 12 Bits

• The constant (immediate) is part of the instruction!

• To use larger constants, one needs to go through a register

xori x6, x6, 0x12345678
lui x5, 0x12345
addiu x5, x5, 0x678
xor x6, x6, x5

5

Assembler Directives

• The assembler can help to have more readable code

lui x5, 0x12345
addiu x5, x5, 0x678
xor x6, x6, x5

.equ something, 0x12345678

lui x5, %hi(something)
addiu x5, x5, %lo(something)
xor x6, x6, x5

6

A Strange Register: x0

• The register x0 does not behave like all others:
– Register x0 is always zero
– One can write into x0 but this has no effect—because it is always zero

• Both aspects are handy in many situations
– Zero is a very common, useful value—e.g., set x5 −x5

sub x5, x0, x5
– If one does not care of the result of an instruction—e.g., no operation

add x0, x0, x0

7

Pseudoinstructions

li should probably be called mvi
but is not for historical reasons

addiu x5, x0, 0x123

li x5, 0x123

lui x5, 0x12345
addiu x5, x5, 0x678

li x5, 0x12345678

Pseudoinstruction Base Instruction(s) Meaning

8

Why Pseudoinstructions?
“and x5, x1, x3”

0000 0000 0010 0000 1000 0011 0010 0011

“x5” 1 “x1” “x3” “and”

01001 1 00001 00011 0110011

Decoder

We want to minimize
hardware resources…

…and we want to spend
minimal time decoding!

Make this simple!

9

li x1, 0x00123456
li x2, 0
li x3, 1
li x4, 0
li x5, 0
li x6, 32

loop: and x5, x1, x3
add x2, x2, x5
srli x1, x1, 1
addi x4, x4, 1
bne x4, x6, loop

Control Flow (or Control Transfer)

Only one form of control flow:
branch/jump to a particular instruction

value

x0 0

x1 0x00123456

x2 0

x3 …

…

x30 …

x31 …

1
0

An IF-THEN-ELSE

if (x5 == 72) {
x6 = x6 + 1;

} else {
x6 = x6 - 1;

}
…

.text

li x7, 72
beq x5, x7, then_clause

else_clause:
addi x6, x6, -1
j end_if

then_clause:
addi x6, x6, 1

end_if:
…

beqi does not exist
(no space in the encoding for an immediate)

Branch if equal

Jump back to
the rest of the

code

1
1

Jumps and Branches

• A common but far from universal distinction
– Jumps unconditional control transfer instructions
– Branches conditional control transfer instructions

• This is the RISC-V convention (inherited from MIPS and used by
SPARC, Alpha, etc.)

• Other processors do not. In x86, for instance, everything is a
jump: JMP, JZ, JC, JNO

1
2

Pseudoinstructions

The processor implements only < and ≥
and the assembler “creates” ≤ and >

Pseudoinstruction Base Instruction(s) Meaning

1
3

An DO-WHILE Loop

do {
x5 = x5 >> 1;
x6 = x6 + 1;

} while (x5 != 0);
…

.text

loop:
srli x5, x5, 1
addi x6, x6, 1
bnez x5, loop

…

1
4

Functions

• Our high-level code is conveniently organized in functions (a.k.a.
routines, subroutines, procedures, methods, etc.)

• Reuse and modularity!

int main() {
…
b = sqrt(a);
…
d = sqrt(c);
…

}

int sqrt(int n) {
int r;
…
return r;

}

1
5

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

1
6

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

1
7

main:
…
j sqrt

back:
…

A Too Simple (i.e., Not Working) Approach

sqrt:
…
j back

j sqrt
back2:

…

We need to know the value of the
Program Counter (PC) when the call takes place

We need to use that information when jumping back

1
8

The PC Is Not a Normal Register
Registers are here

The PC is here

1
9

main:
1200 …
1204 jal x1, sqrt
1208 …

2416 …
2420 jal x1, sqrt
2424 …

The Good Approach

sqrt:
3648 …

4896 …
4900 jr x1

Jump and link,
that is, leave PC + 4 into x1

as a “link” to the caller

x1 1208

Jump to the address
specified in a register

2
0

main:
1200 …
1204 jal x1, sqrt
1208 …

2416 …
2420 jal x1, sqrt
2424 …

The Good Approach

sqrt:
3648 …

4896 …
4900 jr x1

Jump and link,
that is, leave PC + 4 into x1

as a “link” to the caller

x1 2424

Jump to the address
specified in a register

2
1

Only Two Real Jump Instructions!

By convention RISC-V uses always
register x1 to store the return address

Pseudoinstr. Base Instruction(s) Meaning

In RISC-V, imm(reg)
simply means reg+imm

2
2

Register Conventions

We will understand
this column later…

2
3

main:
1200 …
1204 jal sqrt
1208 …

2416 …
2420 jal sqrt
2424 …

The Good Approach

sqrt:
3648 …

4896 …
4900 ret

call
in many other ISAs

ret
almost universally

2
4

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

2
5

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

2
6

main:
1200 …
1204 jal sqrt
1208 …

2416 …
2420 jal sqrt
2424 …

Calling a Function from a Function

sqrt:
3648 …

4216 …
4220 jal round
4224 …

4896 …
4900 ret

round:
5248 …

5964 …
5968 ret

ra 1208

ra 4224

The second jal has
overwritten the first

return address!

Wrong!

2
7

main:
1200 …
1204 jal sqrt
1208 …

2416 …
2420 jal sqrt
2424 …

Calling a Function from a Function

sqrt:
3648 …

4216 add x5, x7, x8
4220 jal round
4224 sub x6, x6, x5

4896 …
4900 ret

round:
5248 …
5252 addi x5, x11, 3

5964 …
5968 ret

Who can use x5?!

2
8

main:
1200 …
1204 jal sqrt
1208 …

2416 …
2420 jal sqrt
2424 …

A Very Very Simple Approach

sqrt:
3648 …

4216 add x5, x7, x8
4220 jal round
4224 sub x6, x6, x5

4896 …
4900 ret

round:
5248 …
5252 addi x10, x11, 3

5964 …
5968 ret

round can
only use x10 to x15

sqrt can
only use x2 to x9

Clearly not scalable…

2
9

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

3
0

.text

sqrt:
…
add x5, x7, x8

jal round

sub x6, x6, x5
…
ret

.text

sqrt:
…
add x5, x7, x8
sw ra, (sqrt_save_ra)
sw x5, (sqrt_save_x5)
jal round
lw ra, (sqrt_save_ra)
lw x5, (sqrt_save_x5)
sub x6, x6, x5
…
ret

Preserve what we care
before calling

Restore after returning

A Simple Approach

.data

sqrt_save_ra: .word 0
sqrt_save_x5: .word 0

Obtain some
memory space

These load/store
instructions with immediate

addresses do not exist!

3
1

.data

find_child_save_ra: .word 0

.text

find_child:
…
sw ra, (find_child_save_ra)
jal find_child
lw ra, (find_child_save_ra)
…
ret

Problem: A Recursive Function!

Back to square one!

Every invocation of find_child saves its
return address in find_child_save_ra,

overwriting the value of the caller…

3
2

What Is the Problem?

• Static memory allocation vs. dynamic
– Static fixed at assembly / compile / program writing time
– Dynamic fixed during execution

• This is static!

• Every invocation of the function needs a new place to store the
return address and their data

.data

find_child_save_ra: .word 0

3
3

The Idea of a Stack

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

Reserve statically an
empty region of memory

3
4

The Idea of a Stack

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 4000

x2

Use a register (e.g. x2) to
point to the first used word
after the end of the region

3
5

Dynamically Allocating Space (e.g., 3 Words)

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 3988

x2

x2

addi x2, x2, -12

3 words of 4 bytes

This space is now
reserved for us!

3
6

Using the Space

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 3988

x2

x2

sw ra, 0(x2)
sw x5, 4(x2)
sw x6, 8(x2)

This means “store at the address
pointed by the value in x2 plus 8”

3
7

Dynamically Allocating More Space

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 3984

x2
x2

addi x2, x2, -4

The values we
saved are safe!

3
8

Deallocating Space Is Simple

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 3988

x2

addi x2, x2, 4

x2

3
9

Retrieve Saved Values

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 3988

x2

lw ra, 0(x2)
lw x5, 4(x2)
lw x6, 8(x2)

4
0

x2

More Deallocation

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2 = 4000

x2

x2

addi x2, x2, 12

4
1

Stack: Limited but Effective

• The simplest form of dynamic memory allocation
• Simplicity comes with a big limitation

– Last-In, First-Out (LIFO)
– Deallocation order must be the inverse of the allocation order!

• Yet, perfectly matched to our application (function calls)
• Other needs will require much more complex approaches that

generally need more “management” and need to deal with
garbage collection

4
2

Stack Pointer

• This is so important that we are going to devote a register to this
purpose and everybody will comply with our conventions

• Other architectures have special instructions to place stuff on
the stack (push) and to retrieve it (pop)

addi sp, sp, -4
sw x5, 0(sp)

PUSH AX

4
3

Spilling Registers to Memory
…
addi sp, sp -8
sw x8, 0(sp)
sw x9, 4(sp)
…

freely use
x8 and x9

…
lw x9, 4(sp)
lw x8, 0(sp)
addi sp, sp, 8
…

sqrt:
addi sp, sp -4
sw ra, 0(sp)
…

freely call
other functions

…
lw ra, 0(sp)
addi sp, sp, 4
ret

Whoever needs to free
registers, can obtain some

space from the stack

In particular,
functions can save

their return address
(if they call other

functions)

4
4

Registers across Functions

It does not matter (much) provided that everyone agrees…

…
addi sp, sp -4
sw x20, 0(sp)

sqrt changes x20
jal sqrt
lw x20, 0(sp)
addi sp, sp, 4
…

Functions change registers
and callers save their stuff

sqrt:
addi sp, sp -4
sw x20, 0(sp)
…

uses freely x20
…
lw x20, 0(sp)
addi sp, sp, 4
ret # x20 is preserved

Functions preserve registers

?

4
5

Preserving Registers: The RISC-V Way

• A bit of both

Saved registers are
callee saved

Temporary registers are
caller saved

Of course!

4
6

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

4
7

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

4
8

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

4
9

Passing Arguments: Option 1

• Use some particular registers, both for the arguments and for
the returned result

• We can do it ad-hoc…
– sqrt gets the argument in x5 and returns the result in x6

• …or we can have some convention
– All functions pass arguments in registers x10 to x17 and return the

result in x10

• Can this be insufficient? More arguments than allocated
registers? What if we have 10 arguments for x10 to x17?

5
0

Passing Arguments: Option 2

• We can put them on the stack
• Universal solution (the stack is

“unlimited”)
• More work than simply using

registers, though…
• Many commercial processors do

that

…
addi sp, sp, -4
sw s3, 0(sp) # s3 = arg
call sqrt
…

sqrt:

addi sp, sp, -4
sw ra, 0(sp)
…
lw t4, 4(sp) # t4 = arg
…
ret

Offset from sp
changes because

sp changes

5
1

Passing Arguments: Option 2 (+ fp)

• In addition, one can have another
register (Frame Pointer; fp or x8
in RISC-V) point to the same
location as sp on entry

• Code may be more readable:
– sp changes inside the function and

so do relative offsets
– Offsets with respect to the fp are

fixed

• Use of fp is optional and even
varies among users and compilers

…
addi sp, sp, -4
sw s3, 0(sp) # s3 = arg
call sqrt
…

sqrt:
mv fp, sp
addi sp, sp, -4
sw ra, 0(sp)
…
lw t4, 0(fp) # t4 = arg
…
ret

5
2

Passing Arguments: The RISC-V Way

• A bit of both

– Some registers reserved for the arguments and return value(s)

– Rest goes on the stack

5
3

Summary of RISC-V Register Conventions

Not covered
in CS-200

5
4

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

5
5

What Calling a Function Involves

1. Place arguments where the called function can access them
2. Jump to the function
3. Acquire storage resources the function needs
4. Perform the desired task of the function
5. Communicate the result value back to the calling program
6. Release any local storage resources
7. Return control to the calling program

5
6

Something to Worry About…

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2!

We will definitely need to find a solution!
(In a few weeks’ time…)

5
7

References

• Patterson & Hennessy, COD – RISC-V Edition
– Chapter 2 and, in particular, Sections 2.6, 2.7, and 2.8

	CS-200�Computer Architecture�—�Part 1b. Instruction Set Architecture�Branches, Functions, and Stack
	The Contract between HW and SW
	Arithmetic and Logic Instructions Are Easy
	Constants Must Take ≤ 12 Bits
	Assembler Directives
	A Strange Register: x0
	Pseudoinstructions
	Why Pseudoinstructions?
	Control Flow (or Control Transfer)
	An IF-THEN-ELSE
	Jumps and Branches
	Pseudoinstructions
	An DO-WHILE Loop
	Functions
	What Calling a Function Involves
	What Calling a Function Involves
	A Too Simple (i.e., Not Working) Approach
	The PC Is Not a Normal Register
	The Good Approach
	The Good Approach
	Only Two Real Jump Instructions!
	Register Conventions
	The Good Approach
	What Calling a Function Involves
	What Calling a Function Involves
	Calling a Function from a Function
	Calling a Function from a Function
	A Very Very Simple Approach
	What Calling a Function Involves
	A Simple Approach
	Problem: A Recursive Function!
	What Is the Problem?
	The Idea of a Stack
	The Idea of a Stack
	Dynamically Allocating Space (e.g., 3 Words)
	Using the Space
	Dynamically Allocating More Space
	Deallocating Space Is Simple
	Retrieve Saved Values
	More Deallocation
	Stack: Limited but Effective
	Stack Pointer
	Spilling Registers to Memory
	Registers across Functions
	Preserving Registers: The RISC-V Way
	What Calling a Function Involves
	What Calling a Function Involves
	What Calling a Function Involves
	Passing Arguments: Option 1
	Passing Arguments: Option 2
	Passing Arguments: Option 2 (+ fp)
	Passing Arguments: The RISC-V Way
	Summary of RISC-V Register Conventions
	What Calling a Function Involves
	What Calling a Function Involves
	Something to Worry About…
	References

